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ABSTRACT

Does an outage impact any users? Can a geolocation database
known to be good at locating users and bad at infrastructure be
trusted for a particular prefix? Is a content-heavy network likely to
peer with a particular network? For these questions and manymore,
knowing which prefixes contain Internet users aids in interpreting
Internet analysis. However, existing datasets of Internet activity
are out of date, unvalidated, based on privileged data, or too coarse.
As a step towards identifying which IP prefixes contain users, we
present multiple novel techniques to identify which IP prefixes
host web clients without relying on privileged data. Our techniques
identify client activity in ASes responsible for 98.8% of Microsoft
CDN traffic and in prefixes responsible for 95.2% of Microsoft CDN
traffic. Less than 1% of prefixes identified by our technique as active
do not contactMicrosoft at all.We presentmeasurements of Internet
usage worldwide and sketch future directions for extending the
techniques to measure relative activity levels across prefixes.
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1 INTRODUCTION

Internet researchers would benefit from knowing which networks
host users. This information is key to interpreting research results
and operational aspects, and to weighting analysis. The impact of an
outage, a slow route, or a network being added to a blocklist [4, 30]
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varies depending on whether the network has users. For a concrete
illustration of how knowledge of which networks host users can
impact analysis, consider 2015 analysis on Internet path lengths
from Google [11]. Google peered directly with 41% of networks
overall, but with 61% of networks hosting end users. Although most
research historically considers all networks and routes equivalently
(e.g., consider how many CDFs across networks one has seen in
IMC papers), this example shows that knowledge of where Internet
users are can give a very different impression of even seemingly
simple questions like “how long are paths from the cloud?’ ’ These
differences can have important implications. When conducting
research on how to optimize cloud performance for users, one
might arrive at very different solutions if under the impression that
most routes pass through intermediate networks (when considering
all networks, only 41% do not) versus most routes being direct
(when considering user networks, 61% are). As another example,
geolocation databases like MaxMind are more accurate for end-user
networks [16], and so knowing which networks host end-users
provides insight into which geolocation results are trustworthy.

Recognizing how this knowledge can impact conclusions, some
research uses various data sources of end-user activity, but the
existing datasets are private, unvalidated, out of date, or opaque. The
2015 study mentioned above used a private CDN dataset [11] that
cannot be shared and is now out of date. One study used IP prefixes
seen in BitTorrent swarms [12] to indicate those prefixes hosted
users and hence could be trusted for geolocation [7]. However,
BitTorrent is no longer as popular. The ISI Internet Census data
measures Internet activity in terms of responsive addresses [18],
and so is not suited for inferring which networks have users.

APNIC’s network population data [19] based on ad impressions
has been used in studies [5, 6, 17, 22], but APNIC’s methodology has
a number of limitations. First, the approach has not been validated
(to the best of our knowledge). Second, APNIC aggregates data
at an AS granularity, which is too coarse-grained for use cases
that require prefix-level information, like our geolocation example
above, and threat-intelligence solutions. Third, the approach, which
relies on placing Google Ads and collecting the IP addresses of users
to which they are shown, is expensive. One study spent $5000 and
only observed 8,589 distinct user IP addresses [27], a small fraction
of the user prefixes (much less addresses) active in the world. This
cost may make it prohibitive for other groups to set up similar
measurements that address the limitations of APNIC and then keep
the results updated over time. Fourth, network coverage is difficult
to control due to the non-deterministic nature of the ad-bidding
process, even when making use of targeted advertisements. Finally,
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ad-based measurements raise ethical concerns due to the inability
to gather informed user consent before launching the campaigns.

New techniques. We propose two new, replicable techniques that
estimate which networks host active Internet users by identifying
which contain web clients. Some clients may be bots and crawlers,
but most networks with clients contain (human) users, and so our
work is an important step towards the goal of identifying networks
hosting users. Our two techniques fundamentally differ and have
different tradeoffs.

Our first technique probes Google Public DNS caches to infer
which prefixes have been querying for particular domains (§3.1).
If a prefix queries for user-facing services, we infer that it likely
hosts users. Our technique relies on the fact that Google Public
DNS accepts queries that specify an EDNS0 Client Subnet (ECS)
prefix, which means that Google only returns a cached DNS record
if an IP address from that prefix previously queried for the same
domain. This mechanism allows us to scan for activity over the
entire IPv4 address space. Because Google Public DNS is anycast, it
will only cache for an ECS prefix at the Google site where anycast
routes the prefix’s queries, and so we geo-distribute our probing to
reach different sites. We are the first to probe Google Public DNS
with ECS queries to discover Internet activity worldwide.

Our second technique crawls traces from the root DNS servers
to find queries from Chromium-based browsers, since networks
sourcing significant Chromium queries likely host users (§3.2). As
we explain in more detail below, Chromium-based browsers use
DNS probes to detect DNS interception [35]. Chromium sends these
probes whenever it is launched or whenever the device IP or DNS
configuration changes, and the domains probed are designed to not
be cached, and so a count of these queries is a good approximation
of Chromium usage in a network. Since Chromium-based browsers
represent a large majority of browser usage, Chromium usage is a
good approximation of web browser usage.

Validation of existing and new techniques. We compare the results
from our techniques to each other, to APNIC network population
estimates and to server-side logs of client IP addresses from Mi-
crosoft (§4). CDN client data offers the broadest view of Internet
activity at the AS level, capturing 97% of all ASes seen using any
method, but is not widely available to researchers. Our methods
identify 29,973 ASes containing clients not seen by APNIC. More-
over, our results suggest that most prefixes in at least 15% of ASes
do not contain clients. Hence, AS-level activity data such as AP-
NIC is too coarse to understand activity at the IP-level. Finally, we
compare to Microsoft CDN logs and find that the prefixes identified
by our techniques as hosting web clients are responsible for 95.2%
of queries to Microsoft, with 99.1% of them sending at least some
queries to Microsoft. Hence, our methods can identify client prefix
activity with precision and broad, global coverage rivaling a major
cloud/CDN provider.

We conclude with a brief roadmap sketching future work for
going from our lists of active client prefixes to relative activity
levels across prefixes (§6).

2 GOALS

Building a map of Internet activity could come in different forms
suited for answering different questions. For this preliminary in-
vestigation, we prioritize the following goals and discuss tradeoffs:

Focus on client activity. Measuring client-driven activity provides
a basis to assess how Internet events and properties affect clients.
By identifying clients of popular user-facing services, we seek to
approximate the (human) user activity (so-called eyeballs) that is
our ultimate goal. Users are clients, but we do not yet know how
to filter out all non-human clients such as bots and crawlers.

Use replicable approaches. Prior work which used Internet activ-
ity measures to answer research questions often used privileged
data sets that cannot be shared with the community [11, 21]. We
want to base our map on datasets/techniques accessible to other
researchers, and we are happy to share our data (except proprietary
data we use for validation). Replicable approaches and public data
help more researchers tackle difficult problems and allow future
work to directly compare findings, but they may not be able to
achieve the coverage of private datasets.

Provide fine-grained global coverage. We aim to cover as many
client networks as possible, in terms of countries, ASes, and pre-
fixes. A fine-grained map in time and network allows researchers
to answer questions about time of day effects, and the effects of In-
ternet events on specific geographic areas. This focus means we do
not consider methods that are effective only in certain networks or
regions, and we exclude methods that operate on the AS granularity,
since it is too coarse (§4). We do not yet consider IPv6.

3 MEASUREMENT METHODS

3.1 Probing DNS caches for client activity

When users access websites they often issue DNS queries, populat-
ing caches in users’ recursive resolvers. Our first approach, referred
to as cache probing, is based on DNS cache snooping for activity
from clients around the world. In DNS cache snooping, one sends a
non-recursive DNS request to a recursive resolver. If the resolver
returns a record, it must have had the record in cache (because the
query was non-recursive), meaning a client of the recursive must
have queried for the record (within the record’s starting TTL).

One possible approach would be to try to cache snoop recursive
resolvers in ISPs around the world [2, 7, 33]. However, the number
of recursive resolvers that respond to queries from outside their
ISPs has significantly reduced over time [25, 28], denying our goal
of global coverage. One study overcame this limitation by probing
misconfigured customer-premises equipment that would forward
to recursive resolvers and return the result to the prober [26]. The
study found such open forwarders in 4,905 ASes which, while
substantial, is far below our goal of global coverage.

Instead, we leverage Google Public DNS, which has multiple
advantageous properties. First, it is extremely popular as a recursive
resolver, contributing 30-35% of all DNS queries to Microsoft Azure
authoritative DNS servers in January 2019 [9]. Second, it supports
EDNS0 Client Subnet (ECS), a DNS extension in which the recursive
resolver includes a prefix of the querying client’s IP address as
part of the query [13], enabling client-specific responses [10]. An
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implication of Google supporting ECS is that it has to maintain
separate cache entries per client prefix for domains that support
ECS. Third, although normally the recursive resolver sets the ECS
prefix based on the IP address of the querying client, if a client
query instead includes an ECS prefix (not necessarily related to the
client’s IP address), Google Public DNS will use the supplied prefix
in its queries instead.1 We verified this behavior by sending queries
for a domain for which we operate the authoritative resolver.

3.1.1 Methodology. We issue queries to Google Public DNS, vary-
ing the ECS prefix to scan the entire IPv4 space. A cache hit for
⟨prefix, domain⟩ suggests that a client in prefix issued a query
for domain. Our non-recursive queries do not pollute the cache. In
addition to our validation above, a recent study also verified that
Google Public DNS does not query authoritative DNS servers on
cache misses if the recursion desired flag is set to off [31].

Realizing our approach requires addressing a number of chal-
lenges. First, Google Public DNS has PoPs around the world, each
with a set of independent caches, and so it is necessary to query
the PoP that any clients in a prefix would use to determine whether
they have accessed a domain. Google Public DNS relies on anycast
to direct clients to a PoP, so we must issue queries from around the
world to probe the behavior of clients around the world. Anycast
does not always route clients to the nearest PoP [8, 21, 24], and so
it can be challenging to know which PoP to query for a particular
ECS prefix. Second, since records are only cached for the duration
of their TTLs, which vary by record, which domains are queried
for when can impact which ECS prefixes return cache hits.

Identifying candidate prefixes for ECS queries. Since ECS rarely
uses prefix scopes more specific than /24 [34], we start with the
set of 15,527,909 public /24 prefixes (≈ 12𝑀 of which are currently
routed). We use a technique to reduce probing overhead. Authori-
tative resolvers often return a less specific prefix scope for an ECS
response than the request [34], meaning that the recursive resolver
can cache and return the response for all addresses with the re-
turned scope. If a returned scope is less specific than a /24, we
need not query for other /24s within the less specific. While it is
straightforward for us to use this observation to reduce probing if a
Google Public DNS cache hit for a /24 query returns a less specific
scope, a cache miss does not inform us whether or not other nearby
/24 prefixes are worth querying. So, we first issue queries directly
to the authoritative resolver to learn the scope it returns for the full
address space, then use these returned scopes as our query scopes to
Google Public DNS. For example, if a query to the authoritative for
a.b.c.0/24 returns a scope of a.b.0.0/16, we only issue queries
to Google for a.b.0.0/16, saving the overhead of issuing probes
for each /24 in the /16. Appendix A.2 validates this approach.

Geo-distributing measurements to probe caches worldwide. To
probe caches worldwide, we need to issue queries from locations
worldwide that anycast routes to different PoPs. The query dig
@8.8.8.8 o-o.myaddr.l.google.com -t TXT returns which PoP
is reached. We run our measurements from AWS and Vultr cloud
VMs around the world to cover 22 Google Public DNS PoPs (red dots
in Figure 1), out of 45 listed by Google. We tested all AWS regions
and reached 16 PoPs, plus 6 more from Vultr. Our measurements
1Other major public resolvers such as Cloudflare’s do not display this behavior.
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Figure 1: Density of active prefixes identified by our cache probing.
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Figure 2: CDF of cache hits where the prefix is ≤ 𝑋 km from the PoP.

include PoPs in the United States (seven states) and Canada (two
provinces), Asia (five countries/regions), Europe (five countries),
South America (two countries), and Australia. The 22 PoPs we cover
account for 95% of Google Public DNS queries to Microsoft services.
We verified with Google that some PoPs we did not reach are not
active, and 18 of the 23 PoPs we do not cover do not issue any
queries to Microsoft, suggesting they may be inactive. Figure 5 in
Appendix A.1 shows the PoPs we do not measure.

To reduce measurements, we do not query for each prefix at
each Google Public DNS PoP, instead querying for a prefix only at
its most likely PoPs. Since anycast routes most clients to nearby
PoPs for Google Public DNS [23], we use MaxMind to map each /24
prefix to a geolocation (which should be accurate enough for the
user prefixes of interest to us). We first query each PoP with 78,637
prefixes selected randomly out of all the public IPv4 address space
for which MaxMind indicates an error radius smaller than 200 km.
For each PoP, we then determine the radius that contains 90% of
those prefixes that return a cache hit for at least one of the four
most popular domains in the Alexa top global sites list that both
support ECS and have TTLs greater than one minute. We consider
this radius to be a likely service radius for that PoP. In the rest of
our measurements, we query a PoP only for prefixes that MaxMind
places as possibly within the PoP’s service radius (combining the
MaxMind location and error radius for the prefix). Figure 2 justifies
this approach—for three PoPs with diverse geographies, the service
radius ranges from 478 km to 3273 km. Using per-PoP service radii
results in an average of 2.4 million /24 prefixes to probe at each
PoP, compared to an average 4.4 million if we used the maximum
service radius of 5,524 km (used for Zurich) for all PoPs.

Probing details. We select the four most popular domains from
the Alexa top sites global list that both support ECS and have
TTLs greater than one minute (as of 9/22/2021): www.google.com
(rank 1), www.youtube.com (rank 2), facebook.com (rank 7), and
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www.wikipedia.org (rank 13). We also include one popular do-
main hosted by Microsoft Azure Traffic Manager that supports
ECS and has a TTL of 5 minutes, which we will use to validate our
methodology. We issued cache probes for 120 hours at a rate of 50
prefixes per second per domain at each PoP, looping over the list of
assigned prefixes continuously. Since Google Public DNS employs
multiple independent cache pools at each PoP [31], we issue 5 re-
dundant queries for each ⟨PoP, prefix, domain⟩ combination to
increase the likelihood that our queries can cover multiple caches.
We queried Google Public DNS through DNS over TCP instead
of UDP, as probing the same domains repeatedly using UDP trig-
gers a rate limit much lower than the normal 1,500 QPS limit. We
consider a prefix active if Google Public DNS returns a cache hit
for any domain indicating the prefix with return scope > 0 for an
ECS query (a return scope of 0 indicates the cache entry was for
the whole address space rather than for a particular prefix). In the
future (§6), we will assess how queries for different domains with
varying popularity, TTLs, and user bases can be combined to obtain
a rich picture of the types and relative activity levels for a network.

3.1.2 Strengths and Limitations. Google Public DNS cache prob-
ing can be replicated by anyone, without requiring any privileged
access or data. It directly measures (likely) active client prefixes,
rather than measuring activity from recursive resolvers or another
proxy of client activity. It also lends itself to developing rich signals
by combining observations across time and domains. However, the
approach has limitations. It measures active use of Google Public
DNS (and not of other recursive resolvers), which is popular (§3.1)
but may have skewed adoption along various dimensions. DNS’s
use of recursive resolvers and caching also introduces complexities
in comparing activity levels across ECS prefixes. It is likely impos-
sible to quantify how much a DNS record was used from cache
within its TTL, and cross-prefix comparisons are tricky because of
differences in addressing (including NAT) within an ECS prefix.

3.2 Crawling DNS for Chromium Queries

We call our second approach DNS logs. We look for DNS queries
matching a signature of the Chromium web browser codebase,
which is part of browsers including Chrome, Microsoft Edge, Brave,
and Opera. The number of Chromium DNS queries from a prefix is
intuitively an indicator of the level of client activity.

3.2.1 Methodology. Chromium detects DNS interception by query-
ing for random strings of 7-15 lowercase letters [35]. Chromium
sends queries when the browser starts, and when the device’s IP
address or DNS configuration changes. Because these queries often
have no valid TLD appended (e.g., COM), they should not result
in cache hits at recursive resolvers, so the queries go to a DNS
root server [35]. To separate Chromium queries from others (e.g.,
“sdhfjssf” vs. “columbia”), we use the heuristic that randomly gener-
ated strings likely have few collisions. Using empirical simulations,
we found Chromium queries would collide fewer than 7 times per
day across all roots with 99% probability.

We look for queries matching this pattern queried less often than
our daily threshold in the DITL traces, 2 days of traces of queries to
most root DNS servers [15]. The queries in the traces contain the
IP address of the querier, which is generally the recursive resolver

used by the Chromium client. We consider a matching query to be
a strong indicator that a recursive resolver with that IP address is
used by a user of a Chromium browser. We process J, H, M, A, K
and D root, the roots that offer un-anonymized, complete traces in
the most recent available (2020) DITL.

3.2.2 Strengths and Limitations.

A direct, precise signal with global coverage. Using Chromium
queries as a proxy for client activity provides per-resolver counts
proportional to the number of clients, assuming counts over large
populations are proportional to the number of clients. Counting
Chromium queries offers truly global coverage—if a recursive re-
solver forwards Chromium queries to the roots, they are in DITL.
Most major browsers use Chromium, and the market share is grow-
ing. Counting Chromium queries can be done by many researchers
(through access to DNS-OARC, or via collaboration with a root
deployment, some of which are hosted by academic institutions).

But . . . it’s not perfect. First, IP addresses seen in root DNS packet
traces are of recursive resolvers, and so Chromium queries provide
a signal of client activity at the recursive resolver level rather than
at the prefix or AS level.

Second, user activity and the presence of Chromium queries
are not perfectly correlated. The analysis excludes users of Safari
and Firefox. Chromium queries are (only) executed each time the
browser starts up, and each time the system’s IP address or DNS
configuration changes [35]. Also, DITL traces are only available
yearly and do not contain all root letters, so time-based analysis
is not possible from DITL alone. Moreover, the implementation of
this feature is subject to change. Since Chromium queries cause a
considerable load on the root DNS, the Chromium team has shown
interest in reducing the number of DNS queries going to the root
DNS [36]. We verified in September 2021 with B root that a few
percent of all B root queries are Chromium queries, although that
number is only 30% of what it was in 2020.

4 VALIDATION & CROSS-COMPARISON

Datasets. We compare client activity indicators obtained using
cache probing and DNS logs to measures of activity used in
prior work. First, we compare our results to APNIC user estimates
(APNIC), which use a heuristic based on Google Ad volumes to
generate user population estimates by AS. APNIC is publicly avail-
able, so it is useful to see how these new methodologies augment
existing, widely accessible methods of estimating activity. Second,
we compare three private datasets which contain measures of client
activity for two popular Microsoft Azure services: CDN and DNS
Traffic Manager. These services are used by billions of users in tens
of thousands of ASes and hundreds of countries/regions daily. The
first measure (Microsoft clients) is proportional to the number
of times clients access the CDN, aggregated by client IP address.
The second (Microsoft resolvers) is a count of client IP addresses
that the CDN observes using each recursive resolver, aggregated
by recursive resolver IP address. The third (cloud ECS prefixes)
is the set of ECS prefixes observed in DNS queries for authoritative
records of Traffic Manager, Azure’s DNS-based load balancing for
cloud tenants. We aggregate the data by prefix and by AS.
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DNS activity is a good proxy for web client activity. To demon-
strate that DNS-based techniques like ours can be a good proxy for
identifying Internet clients, we compare a full day of (1) /24 prefixes
fromMicrosoft clients (no ECS) with (2) ECS prefixes from cloud
ECS prefixes. The CDN sees HTTP requests from prefixes includ-
ing ones responsible for 97.2% of the DNS queries. Prefixes seen in
the ECS queries are responsible for 92% of the HTTP requests to
the CDN. This large overlap shows that client prefixes with DNS
activity usually have HTTP(S) activity, and our techniques will be
able to identify most prefixes with web activity (the goal) if they are
able to identify most prefixes with DNS activity (what they measure).
Not all prefixes that query CDNs are human users: both services
see some bot, crawler, and machine-to-machine traffic.

Cache probing recovers most DNS activity. We compare the results
of our cache probing for a popular Microsoft Azure domain with
ground truth ECS data observed at its authoritative resolver. Our
cache probing includes 91% of the ground truth ECS/24 prefixes,
showing that our approach can uncover the vast majority of a
service’s client population that is using Google Public DNS.

AS-level results. We consider the overlap in ASes detected as
hosting clients by our two techniques and the ones we compare to.
Although our methods identify activity at finer granularities, we
start with AS-level comparisons to compare with APNIC. Table 3 in
Appendix B.1 presents pairwise comparisons. In total, 66,804 ASes
were in at least one dataset, with 64,766 of those (97%) being in the
Microsoft clients. The APNIC dataset, despite being widely used,
misses 64% of the ASes observed as hosting Microsoft clients.
Our techniques perform better, missing only 40.1% (DNS logs) and
44.5% (cache probing), and recovering 74.2% and 81.9% of the ASes
observed by APNIC. DNS logs detects about the same number of
ASes as cache probing (39,652 vs 36,989), and the overlap between
them is fairly low—combined, they detect 51,859 ASes. The low
overlap could result from DNS logs measuring some ASes that
host clients’ recursive resolvers but not clients. The low overlap
means that combining our datasets yields more overlap with others.
For example, cache probing ∪ DNS logs observes 21,866 ASes
in APNIC (93.8%) and 50,006 ASes inMicrosoft clients (77.2%).
To help understand the ASes our techniques detect as hosting web
clients but that APNIC does not consider as hosting customers,
we consider what types of ASes they are, according to ASdb [38].
Of all 29,973 ASes detected by our methods but absent in APNIC,
ASdb categorizes 27,773 (92.7%). Of these, 10,998 (39.5%) are Internet
Service Providers (ISPs). Outside the ISPs, 4,823 (17.4%) are host-
ing/cloud providers (which may reflect non-human web clients),
and 1,723 (6.2%) are schools, which likely host human users.

The ASes we miss are generally small. ASes that at least one
of our techniques identifies as hosting clients account for 98.8%
of theMicrosoft clients queries (compared to 92% for APNIC).
Table 4 in Appendix B.2 presents pairwise comparisons by volume.
Although our DNS logs technique only identifies 74.2% of the AP-
NIC ASes, those ASes account for 97.6% of the world’s Internet
population, per APNIC estimates. ASes that include prefixes that
cache probing detected as active also account for 97.6% of AP-
NIC’s Internet population. Figure 3 breaks this analysis down per
country. In most countries, cache probing uncovers client activity
in ASes that APNIC identifies as hosting all or almost all of the
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Figure 3: Fraction of a country’s Internet users (according to APNIC)

in ASes where our cache probing technique identified client activity.

We identifiedmost eyeballs inmost countries, including≈ 100% in the

U.S., 99% in India, and 98% in China.

Internet users. Many of the larger countries (in terms of # of users)
where cache probing coverage is worse are in South America,
even though our probes covered all Google PoPs in South America
and most in the southern United Stages (Appendix A.1).

Despite these gaps, our cache probing results in global cover-
age: Figure 1 plots the MaxMind geolocations of prefixes where
cache probing detects activity. For each prefix with return scope
larger than /24, we make the simplifying assumption that all its /24
subprefixes are active. For (rare) return scopes smaller than /24, we
assume the entire /24 prefix it belongs to is active. Our measure-
ments infer more activity in some regions than others, e.g. Europe
is more active than China, although we cannot easily differentiate
how much this is a result of differences in prefix allocation policies,
Google Public DNS use, popularity of the domains we probe, or
coverage of our vantage points. Within a region, the distribution of
active prefixes often roughly follows the distribution of population.
For example, activity in the US and Brazil is densest near coasts.
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Figure 4: Fraction of AS’s prefixes detected as active by cache probing.

Prefix-level measurements reveal variations within and across ASes.
Figure 4 depicts the fraction of /24 prefixes announced by each AS
that our cache probing technique detects as active (out of all the
AS announces [1]). When Google Public DNS returns a cache hit for
a prefix with scope bigger than /24, we know at least one /24 in the
prefix has client activity, but we cannot infer exactly which or how
many. So, we estimate upper and lower bounds. The lower bound
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cache probing DNS logs cache probing ∪ DNS logs Microsoft clients Microsoft resolvers
cache probing 9712.2K (100.0%) 650.5K (6.7%) 9712.2K (100.0%) 6614.4K (68.1%) 932.6K (9.6%)

DNS logs 650.5K (94.0%) 692.2K (100.0%) 692.2K (100.0%) 661.2K (95.5%) 419.8K (60.6%)
cache probing ∪ DNS logs 9712.2K (99.6%) 692.2K (7.1%) 9753.9K (100.0%) 6647.8K (68.2%) 954.1K (9.8%)

Microsoft clients 6614.4K (74.7%) 661.2K (7.5%) 6647.8K (75.1%) 8849.9K (100.0%) 940.5K (10.6%)
Microsoft resolvers 932.6K (96.4%) 419.8K (43.4%) 954.1K (98.6%) 940.5K (97.2%) 967.7K (100.0%)

Table 1: Each entry shows the size of intersection of the set of /24 prefixes observed in the two datasets. In parentheses is the percent of the row

dataset also observed in the column dataset. The diagonal gives the size of each dataset.

line is the minimum activity consistent with our measurements, a
single active /24 per non-overlapping prefix with a cache hit. The
upper bound is the maximum amount of activity, where we assume
activity exists within all /24 prefixes in a prefix with a cache hit.

The results vary widely across ASes—some have only a small
fraction of prefixes active, while some have most/all prefixes active.
This result shows that APNIC’s per-AS granularity is too coarse
for use cases that need to understand activity at the IP-level. Our
techniques help fill that gap. The result also shows that our current
technique allows a wide range of interpretations—the median per-
centage of active prefixes per AS could be anywhere between 25%
and 100%—suggesting room to refine our techniques.

Prefix-level analysis. Table 1 shows the overlap in /24 prefixes
found to be hosting clients using our methods and in privileged
Microsoft traces. We upper bound our cache probing coverage by
assuming that, if it found a prefix to contain clients, all /24 prefixes
within that (possibly larger) prefix contain clients. Our methods
capture prefixes that include 9.75M /24 prefixes in total, including
75.1% of /24 prefixes seen by Microsoft clients, and those /24
prefixes represent 95.2% of Microsoft clients volume. Although
our DNS logs method only finds 692.2K prefixes, 95.5% of these
prefixes were also in Microsoft clients, suggesting that these
prefixes do host clients (high precision). However, only 6.6M (74.7%)
of the /24 prefixes included in cache probing were also seen by
Microsoft clients, suggesting that our upper bound on cache
probing is too generous. Our future work will try to improve the
precision. Still, 99.1% of prefixes returned as the scope for our cache
probing queries contain at least one /24 in Microsoft clients, so
our cache probing method has few false positives.

5 RELATEDWORK

Our cache snooping approach is inspired by earlier approaches
that either cache snoop Google Public DNS or use ECS to simulate
access to vantage points worldwide, although we are not aware
of any earlier work that uses these approaches for our goal of
understanding global Internet usage. Two studies used ECS scans
of the entire IPv4 space to uncover the client-to-server mapping
for CDNs [7, 34]. That work did not use Google Public DNS and
was interested in where a CDN would direct an ECS prefix, not
in whether actual clients from that prefix had queried for popular
domains. A recent study demonstrated how cache snooping on
Google Public DNS (and other public DNS services) can be used to
estimate the usage of rare domains [31]. The particular approach in
that study did not achieve the global coverage that is our goal, as it
did not use ECS and limited itself to measurements from 43 United
States vantage points. So, its cache snooping was limited to results
for ≤ 43 client prefixes to 7 Google PoPs. Other work investigated
the ECS behavior of recursive resolvers [3].

Previous work estimated the popularity of websites by using
open resolvers [29, 37]. Our work instead uses popular domains to
identify Internet clients. A recent study analyzes ECS queries from
Google Public DNS as seen in traces at an authoritative resolver
to understand usage of Google Public DNS [14]. The study reveals
interesting aspects of Google Public DNS adoption, although the
queries do not provide an unbiased view of global usage because
the resolver is mainly authoritative for Dutch domain names. A
study measured connection logs from a CDN to estimate Internet
activity at the IP address granularity [32]. They use activity metrics
as a proxy to assess IPv4 address scarcity and characterize Internet
growth. We used similar logs for ourMicrosoft clients dataset.

6 CONCLUSIONS AND FUTUREWORK

Measuring user Internet activity would provide a rich source of data
to help answer research questions. We present preliminary work
on new techniques for measuring client activity—cache probing
Google Public DNS and crawling root DNS traces. Our techniques
have global coverage, can be replicated by other researchers with-
out privileged data, and provide fine-grained client activity data
(at the resolver or prefix level). Going forward, we will explore
how to infer which prefixes with client activity likely include (hu-
man) user activity, using signals such as activity across a range of
user-facing services, patterns over time (e.g., diurnal patterns), and
consistency across methods (e.g., using Chromium and querying
popular services).

Future work will focus on obtaining a relative activity ranking
across prefixes, similar to how APNIC lists ASes by Internet user
population [19]. We envision twomajor directions. First, we want to
combine the information from our two techniques, which is difficult
since cache probing measures client prefix activity whereas DNS
logsmeasures recursive resolver prefix activity. One possibility is to
join on geolocation—since users are often physically close to and in
the sameAS as their recursive resolver [10], we can estimate activity
at the ⟨region, AS⟩ granularity and associate that activity with
active prefixes in that ⟨region, AS⟩. Second, the cache probing
technique yields different results depending on where and when
it is run, and on which domains. We are developing techniques to
estimate a prefix’s cache hit rates over time and across domains,
as a step towards a relative ranking of prefix activity levels. Our
contemporaneous workshop paper presents initial validation of
this approach to measuring relative prefix activity levels as part of
a vision for an Internet traffic map [20].

Future work can investigate which methodologies for measuring
activity—including both ours and others—are best for particular
questions, to bring us closer to understanding how users are affected
by, interact with, and are a part of different areas of the Internet.
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A ADDITIONAL VALIDATION OF

METHODOLOGIES

A.1 Coverage of Google Public DNS PoPs

As discussed in Section 3.1.1 and shown in Figure 1, our current
vantage points suffice to probe 22 Google Public DNS PoPs. Fig-
ure 5 shows the locations of those PoPs and the ones we currently
do not probe. For the 23 we do not probe, 5 show up as recursive
resolvers in our Microsoft resolvers dataset (unprobed and
verified in Figure 5), indicating that they actively serve clients.
The other 18 do not query Microsoft Azure’s DNS Traffic Man-
ager, (the source of Microsoft resolvers), during the week of
2021/09/20, suggesting that they are likely not actively serving
users or announcing the anycast route, and explaining why we
were unable to reach them from any cloud data center we tried.
Additionally, the 5 unprobed and verified sites account for only
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5% of the Google Public DNS queries seen by Microsoft, with the
22 sites in probed and verified that provide the results in our
paper account for 95%. This result suggests that the unprobed and
verified receive little traffic, so likely would result in relatively
fewer ECS cache hits for cache probing and may have fewer any-
cast routes reaching them, explaining why the cloud providers we
have tried do not reach them.

A.2 Validating ECS query scopes

Section 3.1.1 describes how we set the prefix scopes we use for ECS
queries to reduce probing overhead, and this section demonstrates
that the response scopes assigned by the authoritative name servers
are stable, and therefore the reduction in probes does not signifi-
cantly alter our cache probing results or the granularity of cache
hit prefixes. If the response scopes assigned by the authoritatives
are stable over time, our less specific query scopes will match the
response scopes cached by Google Public DNS. In this case, our
probes that use the less specific query scope would generate the
same result as if we had probed for the /24 prefix.

Across all cache hits, 90% of the responses have the same scope
as the query, suggesting that our approach to reducing probing
overhead has little impact on our overall results. The results are
shown in Table 2, with 97% of the hits having response scopes and
queries scopes that differ by at most 2. Only 1% of the hits have
response scopes and queries scopes that differ by more than 4. This
result demonstrates that the vast majority of response scopes are
stable over the period in which we probed Google Public DNS, and
our query scope reduction technique significantly reduces probing
overhead without having a large impact on results.

B ADDITIONAL MEASUREMENT RESULTS

B.1 Dataset overlap by AS

Expanding the results from Section 4, Table 3 shows the overlap
in ASes detected as hosting users by five techniques: our cache
probing for per-ECS cache hits, our crawls of root DNS logs
for Chromium queries, plus APNIC,Microsoft clients, andMi-
crosoft resolvers. Each entry shows the size of intersection of
the set of ASes observed in the two datasets. The parentheses in
a column indicates the coverage of that technique relative to the
others.

B.2 Dataset overlap by activity level

Expanding the results from Section 4, Table 4 captures how much
of each dataset’s activity volumes are from the ASes that overlap
other datasets (i.e., the ASes from Table 3). Columns cache probing
and cache probing ∪ DNS logs do not have a row since they do
not have a measure of volume. The DNS logs column captures
how much activity from each other dataset is from ASes inferred
as active by our DNS logs technique. Although our DNS logs
technique only uncovers 74.2% of the APNIC ASes, those ASes
account for 97.6% of the world’s Internet population, according to
APNIC estimates. The ASes we identify as hosting clients account
for 98.8% of the Microsoft clients queries and 100.0% of the
Microsoft resolvers client IP addresses (compared to 92.0% and
95.7% for APNIC).
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Figure 6: Distribution of relative volume among ASes for three meth-

ods ofmeasuring AS client activity.DNS logs results in similar client

activity estimates toMicrosoft resolvers, which makes sense since

they both rely on signals from recursive resolvers.

B.3 Comparing relative activity by AS

Although we leave relative activity estimates for client prefixes
largely as future work (§6), we present preliminary analysis of one
activity estimate—DNS logs, since DNS logs provides the num-
ber of Chromium queries as a direct per-resolver relative activity
measure. We compare this relative measure to two other relative
measures—the number of IP addresses using a recursive resolver
(Microsoft resolvers) and the estimated Internet population of
an AS (APNIC). In our contemporaneous work [20], we present
preliminary methods to adding activity estimates to our cache
probing methodology.

As an aggregated view of all activity estimates, Figure 6 shows
the distribution across ASes of estimates of client activity using
three methods (DNS logs, APNIC, Microsoft resolvers). DNS
logs and Microsoft resolvers have similar relative distributions,
whereas APNIC tends to have far fewer ASes with smaller numbers
of Internet users.

To supplement the aggregate view in Figure 6, Figure 7 shows the
difference in an AS’s relative activity levels as estimated by different
approaches. The datasets disagree by at most 1e-5 for 90% of ASes,
suggesting all three datasets would roughly group all ASes into
similar levels of client activity. Again, we see DNS logs is the most
similar to Microsoft resolvers, which makes sense since DNS
logsmeasures activity by recursive. In particular, we expectAPNIC
estimates to differ from DNS logs andMicrosoft resolverswhen
clients use a resolver outside their AS. For example, Google public
DNS clients are likely not in the same AS as that service. In this
case, both DNS logs (.5%) and Microsoft resolvers (20%) would
assign a higher weight to Google’s AS, whereas APNIC (9e-6%)
would likely distribute this weight over the ASes whose users use
Google public DNS.
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Scope difference Google YouTube Facebook Wikipedia Microsoft CDN Overall

Exact match 297,891 (89%) 187,204 (88%) 153,373 (89%) 62,928 (96%) 128,519 (94%) 829,915 (90%)
Within 2 327,159 (97%) 206,006 (96%) 168,539 (98%) 63,435 (97%) 129,423 (94%) 894,562 (97%)
Within 4 334,088 (99%) 211,575 (99%) 170,581 (99%) 63,735 (97%) 130,990 (96%) 910,969 (99%)

Table 2: The number of Google Public DNS cache hit prefixes that have response scopes and query scopes that are equal, or that differ by at most

2 or 4. Overall, for 90% of the cache hits, the query scopes match the return scopes exactly. Only 1% of the cache hits have query scopes and return

scopes that differ by more than 4.

cache probing DNS logs cache probing ∪ DNS logs APNIC Microsoft clients Microsoft resolvers
cache probing 36,989 (100.0%) 24,782 (67.0%) 36,989 (100.0%) 19,118 (51.7%) 35,915 (97.1%) 25,602 (69.2%)

DNS logs 24,782 (62.5%) 39,652 (100.0%) 39,652 (100.0%) 17,323 (43.7%) 38,787 (97.8%) 34,573 (87.2%)
cache probing ∪ DNS logs 36,989 (71.3%) 39,652 (76.5%) 51,859 (100.0%) 21,886 (42.2%) 50,006 (96.4%) 37,500 (72.3%)

APNIC 19,118 (81.9%) 17,323 (74.2%) 21,886 (93.8%) 23,344 (100.0%) 23,264 (99.7%) 18,121 (77.6%)
Microsoft clients 35,915 (55.5%) 38,787 (59.9%) 50,006 (77.2%) 23,264 (35.9%) 64,766 (100.0%) 39,825 (61.5%)

Microsoft resolvers 25,602 (63.4%) 34,573 (85.6%) 37,500 (92.8%) 18,121 (44.9%) 39,825 (98.6%) 40,394 (100.0%)
Table 3: Each entry shows the size of intersection of the set of ASes observed in the two datasets. In parentheses is the percent of the row dataset

also observed in the column dataset. The diagonal gives the size of each dataset.

cache probing DNS logs cache probing ∪ DNS logs APNIC Microsoft clients Microsoft resolvers
DNS logs 98.4% 100.0% 100.0% 96.3% 99.8% 100.0%

APNIC 97.6% 97.6% 99.4% 100.0% 100.0% 98.3%
Microsoft clients 94.9% 97.4% 98.8% 92% 100.0% 96.7%

Microsoft resolvers 97.7% 99.9% 100.0% 95.7% 99.3% 100%
Table 4: Each entry gives the percent of total activity volume in the row dataset represented by ASes that also appear in the column dataset (Table 3

gives the number of ASes in these intersections).
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Figure 7: Difference in activity metrics for each AS between each of

the three methods of measuring AS client activity. DNS logs results

in similar client activity estimates to Microsoft resolvers, which

makes sense since they both rely on an intermediate signal from a

recursive resolver.

B.4 cache probing Results by domain

When probing Google Public DNS, we probe for several domains
that users frequently issue DNS requests for. For our cache prob-
ingmeasurements, we selected the four highest-ranked domains in

the Alexa top sites global list that both support ECS (as of 9/26/2021)
and have TTLs longer than 60 seconds: www.google.com (rank
1), www.youtube.com (rank 2), facebook.com (rank 7), and
www.wikipedia.org (rank 13). Facebook only supports ECS when
www is not included. In addition to domains selected from the
Alexa top sites global list, we also probed a popular Microsoft
CDN domain that supports ECS and used its ECS traces. We use
Microsoft logs of clients accessing this domain to validate our
cache probing technique. In the main body we present results for
cache probing aggregated across all these domains.

Table 5 provides results on how well each individual domain
performs in discovering activity at prefix and AS granularities (top),
and cross-comparing each pair of domains (bottom). Since different
domains may reply with different response scopes, we treat prefixes
returned by different domains as matching as long as one prefix
contains the other. Although Wikipedia has many fewer active
prefixes than other domains, we identify a large number of unique
ASes by probing Wikipedia. Wikipedia returns fewer prefixes
because it usually replies with response scopes between 16 and 18
while the rest of the domains usually reply with scopes between
20 and 24. We identify the largest number of unique prefixes and
ASes by probing for Google, possibly due to the site’s popularity
and wide-spread usage. Conversely, we identify relatively few new
prefixes and ASes by probing for YouTube, despite its popularity
as #2 on Alexa top sites global list and the large number of active
prefixes found by probing it. This lack of new information is largely
explained by the overlap of active prefixes between Google and
YouTube, as 89% of active prefixes discovered with YouTube are also
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Google YouTube Facebook Wikipedia Microsoft CDN

Total prefixes 336,261 214,069 164,697 65,462 137,011
Unique prefixes 15,630 (4.6%) 2,644 (1.2%) 590 (0.3%) 2,756 (4.2%) 2,720 (2.0%)
Total ASes 19,859 14,296 11,991 13,367 14,818
Unique ASes 3,607 (18%) 584 (4%) 963 (8%) 2,536 (19%) 2,384 (16%)
Google 336K (100%) 198K (59%) 192K (57%) 274K (82%) 231K (69%)
YouTube 191K (89%) 214K (100%) 136K (64%) 174K (82%) 139K (65%)
Facebook 136K (82%) 130K (79%) 165K (100%) 152K (92%) 131K (79%)
Wikipedia 56K (85%) 51K (78%) 45K (69%) 65K(100%) 42K (64%)
Microsoft CDN 110K (80%) 108K (79%) 99K (72%) 117K (85%) 137K (100%)

Table 5: For the top half of the table: each column shows the number of prefixes that had cache hit(s) to this domain (Total prefixes), the number

of prefixes that had cache hit(s) to only this domain (Unique prefixes), the number of ASes had cache hit(s) to this domain (Total ASes), and
the number of ASes had cache hit(s) to only this domain (Unique ASes). For the bottom half of the table: each entry shows the number and the

percentage of prefixes found through cache hit(s) in row’s domain that also had cache hit(s) to the column domain.

found in Google. Finally, we discovered that probing Facebook does
not add many new prefixes or ASes. We attribute this to the fact
that Facebook only supports ECS without www. Since Facebook

uses its domain with www by default, the version without www may
be queried less often by real users.
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